
Lecture 21 on Dec. 02 2013

This is the last note of this course and we are going to see how can we apply the residue theorem introduced
in lecture 20. The main application is to evaluating the definite integral of one variable real functions.
There are four types of integrals that we are going to study. We introduce them one by one in the following
arguments.

Type I. Letting R(x) be a rational function (same assumption is used in Type II, III and IV), we evaluate∫ 2π

0

R(cos θ, sin θ) dθ. (0.1)

Strategy: Assume z = eiθ. Then while θ runs from 0 to 2π, z runs along the unit circle counterclockwisely.
by this change of variable, we know that

cos θ =
1

2

(
z +

1

z

)
, sin θ =

1

2i

(
z − 1

z

)
, dz = eiθ i dθ = iz dθ.

With the above equalities, (0.1) can be rewritten as∫
|z|=1

R

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
dz

iz
.

Therefore the residue theorem can be applied.

Example 1. Evaluate ∫ 2π

0

dθ

a+ cos θ
,

where a is a real number satisfying |a| > 1.

Solution: By the strategy, we know that the integral can be transformed to∫
|z|=1

1

a+ 1
2 (z + 1

z )

dz

iz
=

∫
|z|=1

−2i

z2 + 2az + 1
dz.

z2 + 2az + 1 has two roots. They are

z1 = −a+
√
a2 − 1, z2 = −a−

√
a2 − 1.

Clearly

Res

(
−2i

z2 + 2az + 1
, z1

)
=

−i√
a2 − 1

, Res

(
−2i

z2 + 2az + 1
, z2

)
=

i√
a2 − 1

.

Now we consider which roots lie in the unit disk |z| < 1. If a > 1, z2 is not in the unit disk and z1 lie in the
unit disk. In this case, by residue theorem,∫

|z|=1

−2i

z2 + 2az + 1
dz = 2πi

−i√
a2 − 1

=
2π√
a2 − 1

.

Similarly we can find the result when a < −1. We leave the arguments to readers.

Type II. Evaluate ∫ ∞
−∞

R(x) dx.
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Strategy: Fixing a R > 0 large enough, we construct a contour ΓR by the following way. Starting from
−R, we go along the real axis to the point R and then go from R back to −R along the upper circle with
radius R. We try to evalute ∫

ΓR

R(z) dz

by residue theorem. On the other hand, we have∫
ΓR

R(z) dz =

∫ R

−R
R(x) dx+

∫
|z|=R,im(z)>0

R(z) dz.

So if we take R→∞, the right-hand side above converges to∫ ∞
−∞

R(x)dx+ lim
R→∞

∫
|z|=R,Im(z)>0

R(z) dz = 2πi
∑
zj

Res(R(z), zj),

where zj is the singular points of R(z) in the upper plane.

Example 2. Evaluate ∫ ∞
−∞

1

x2 + 1
dx.

solution: the function 1/(z2 + 1) has one singularity on the upper half plane. That is i. The residue of
1/(z2 + 1) at i equals to −i/2. Therefore it holds∫ ∞

−∞

1

x2 + 1
dx+ lim

R→∞

∫
|z|=R,Im(z)>0

1

z2 + 1
dz = π.

Now we evaluate the limit on the left-hand side above. By the parametrization Reiθ, we get

lim
R→∞

∫
|z|=R,Im(z)>0

1

z2 + 1
dz = lim

R→∞

∫ π

0

1

R2e2iθ + 1
Reiθi dθ ≤ lim

R→∞

∫ π

0

R

R2 − 1
dθ = 0.

Therefore we know that ∫ ∞
−∞

1

x2 + 1
dx = π.

Type III. Evaluate

III.1 =

∫ ∞
−∞

R(x) cosx dx, III.2 =

∫ ∞
−∞

R(x) sinx dx.

Strategy: Evaluate ∫ ∞
−∞

R(x)eix dx. (0.2)

Then III.1 and III.2 are real part and imaginary part of (0.2), respectively. To evaluate (0.2), we use the
same contour ΓR as in Type II. Therefore we know that∫ ∞

−∞
R(x)eixdx+ lim

R→∞

∫
|z|=R,Im(z)>0

R(z)eiz dz = 2πi
∑
zj

Res
(
R(z)eiz, zj

)
,
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where zj is the singular points of R(z)eiz in the upper plane.

Example 3. Evaluate ∫ ∞
−∞

cosx

x2 + 1
dx.

Solution: Firstly eiz/(z2 + 1) has one singularity i in the upper half plane. Moreover we can calculate

Res

(
eiz

z2 + 1
, i

)
=
e−1

2i
.

Clearly by the strategy, we have∫ ∞
−∞

eix

x2 + 1
dx+ lim

R→∞

∫
|z|=R,Im(z)>0

eiz

z2 + 1
dz =

π

e
.

Now we consider the limit on the left-hand side above. Using the parametrization Reiθ, we know that

lim
R→∞

∫
|z|=R,Im(z)>0

eiz

z2 + 1
dz = lim

R→∞

∫ π

0

e−R sin θ

R2e2iθ + 1
eiR cos θReiθi dθ ≤ lim

R→∞

∫ π

0

R

R2 − 1
dθ = 0.

Here we used the fact that

e−R sin θ ≤ 1

since θ runs between 0 and π. Therefore the above arguments show that∫ ∞
−∞

eix

x2 + 1
dx =

π

e
.

Taking the real part of the left-hand side above, the problem is solved.

Type IV. Evaluate

IV.1 =

∫ ∞
0

R(x) lnx dx, IV.2 =

∫ ∞
0

xαR(x) dx.

where R(x) in IV.1 is an even function.

Strategy: These two integrals can be evaluated by the following contour. Firstly we choose the branch of
ln z by eleminating the negative pure imaginary line. The argument runs from −π/2 to 3π/2. Then we go
from ε to R along the positive direction of the x-axis. Here ε is a small positive number and R is a large
positive number. We proceed to go from R to −R along the upper half circle |z| = R and then go from −R
to −ε along the x-axis. Finally we jump over 0 by going from −ε to ε along the upper half circle |z| = ε.

To evaluate IV.1 and IV.2, one just needs follow the arguments below.

Step 1. Letting x = t2, IV.2 can be rewritten as

IV.2 = 2

∫ ∞
0

t2α+1R(t2) dt = 2

∫ ∞
0

e(2α+1) ln tR(t2) dt.

Notice here we do this change of variable in order to make the R(t2) an even function with respect to t. If
R(x) in IV.2 is already an even number, this step can be skipped. Since we already assume R(x) is an even
function for IV.1, this step is not required for IV.1;
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Step 2. By residue theorem we know that∫ R

ε

R(x) lnx dx +

∫
|z|=R,Im(z)>0

R(z) ln z dz +

∫ −ε
−R

R(x) lnx dx

+

∫
|z|=ε,Im(z)>0

R(z) ln z dz = 2πi
∑
j

Res (R(z) ln z, zj) (0.3)

where {zj} are singularities of R(z) ln z on the upper half plane. By the choice of the branch, we know that
lnx = ln |x|+ iπ for x < 0. Therefore the third integral on the left-hand side above can be rewritten as∫ −ε

−R
R(x) ln |x| dx+ iπ

∫ −ε
−R

R(x) dx.

Applying change of variable, we get∫ −ε
−R

R(x) ln |x| dx+ iπ

∫ −ε
−R

R(x) dx =

∫ R

ε

R(y) ln y dy + iπ

∫ R

ε

R(y) dy.

Applying the above equality to (0.3) and taking ε→ 0, R→∞, we obtain

2

∫ ∞
0

R(x) lnx dx + lim
R→∞

∫
|z|=R,Im(z)>0

R(z) ln z dz + iπ

∫ ∞
0

R(x) dx

+ lim
ε→0

∫
|z|=ε,Im(z)>0

R(z) ln z dz = 2πi
∑
j

Res (R(z) ln z, zj)

As for IV.2, after Step 1, we can apply residue theorem to get∫ R

ε

e(2α+1) ln tR(t2) dt +

∫
|z|=R,Im(z)>0

e(2α+1) ln zR(z2) dz +

∫ −ε
−R

e(2α+1) ln tR(t2) dt

+

∫
|z|=ε,Im(z)>0

e(2α+1) ln tR(t2) dz = 2πi
∑
j

Res
(
z2α+1R(z2), cj

)
(0.4)

where cj are all singularities of z2α+1R(z2) in the upper half plane. Still by lnx = ln |x| + iπ (x < 0), we
can reduce the third integral above to∫ −ε

−R
e(2α+1) ln |t|e(2α+1)iπR(t2) dt = −e2απi

∫ R

ε

e(2α+1) ln sR(s2) ds

Applying the above equality to (0.4) and taking ε→ 0, R→∞ , respectively, we get

(
1− e2απi

) ∫ R

ε

e(2α+1) ln tR(t2) dt + lim
R→∞

∫
|z|=R,Im(z)>0

e(2α+1) ln zR(z2) dz (0.5)

+ lim
ε→0

∫
|z|=ε,Im(z)>0

e(2α+1) ln tR(t2) dz = 2πi
∑
j

Res
(
z2α+1R(z2), cj

)
Then the two integrals can be evaluated.

We now use one more example to complete the note

Example 4. Evaluate ∫ ∞
0

x1/3

x2 + 1
dx.
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Solution.Since 1/(x2 + 1) is already an even function, we don’t need Step 1 in the strategy. So by the
contour, we know that∫ R

ε

x1/3

x2 + 1
dx +

∫
|z|=R,Im(z)>0

z1/3

z2 + 1
dz +

∫ −ε
−R

x1/3

x2 + 1
dx (0.6)

+

∫
|z|=ε,Im(z)>0

z1/3

z2 + 1
dz = 2πi

∑
j

Res

(
z1/3

z2 + 1
, cj

)
.

1. ∣∣∣∣∣
∫
|z|=R,Im(z)>0

z1/3

z2 + 1
dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
|z|=R,Im(z)>0

e1/3 ln z

z2 + 1
dz

∣∣∣∣∣ =

∣∣∣∣∫ π

0

e(lnR)/3+(iθ)/3

R2e2iθ + 1
Reiθi dθ

∣∣∣∣

≤
∣∣∣∣∫ π

0

R4/3

R2 − 1
dθ

∣∣∣∣ −→ 0, as R→∞.

2. ∣∣∣∣∣
∫
|z|=ε,Im(z)>0

z1/3

z2 + 1
dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
|z|=ε,Im(z)>0

e1/3 ln z

z2 + 1
dz

∣∣∣∣∣ =

∣∣∣∣∫ π

0

e(ln ε)/3+(iθ)/3

ε2e2iθ + 1
εeiθi dθ

∣∣∣∣

≤
∣∣∣∣∫ π

0

ε4/3

1− ε2
dθ

∣∣∣∣ −→ 0, as ε→∞.

3. ∫ ε

−R

x1/3

x2 + 1
=

∫ −ε
−R

e1/3 ln x

x2 + 1
=

∫ −ε
−R

e1/3(ln |x|+iπ)

x2 + 1
= eiπ/3

∫ R

ε

x1/3

x2 + 1
.

Applying all the above arguments to (0.6), we get

(1 + eiπ/3)

∫ ∞
0

x1/3

x2 + 1
= 2πiRes

(
z1/3

z2 + 1
, i

)
= 2πi lim

z→i

z1/3

z + i
= 2πi

i1/3

2i
= πe1/3 ln i = πeiπ/6

therefore we know that ∫ ∞
0

x1/3

x2 + 1
=

π

e−iπ/6 + eiπ/6
=

π√
3
.
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